

SIDDARTHA INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Design and Analysis of Algorithms (20CS0523) Course & Branch: B.Tech - CSE

Year &Sem: III B.Tech& II-Sem Regulation: R20

UNIT –I INTRODUCTION, DISJOINT SETS

1	a)	What do you mean by algorithm? List some of the properties of it.	[L1][CO1]	[04M]						
	b)Classify the rules of Pseudo code for Expressing Algorithms.[L2][C01][Simplify steps involved in performance analysis with example.[L2][C01][
2	2 Simplify steps involved in performance analysis with example. [L2][CO1]									
	a) Explain space complexity and time complexity in detail with example. [L2][CO1]									
3	b) Illustrate an algorithm for Finding sum of natural number [L2][0									
4	W	[L2][CO1]	[12M]							
5	Di	scuss briefly with suitable example about Big 'O' notation and Theta notation	[L3][CO1]	[12M]						
6	a)	Solve the given function If $f(n) = 5n^2 + 6n + 4$ then prove that $f(n)$ is $O(n^2)$.	[L3][CO1]	[04M]						
	b)	Explain two types of recurrences in detail with suitable example.	[L2][CO1]	[08M]						
7	a)	Apply the Master's theorem to Solve the following Recurrence relations	[L3][CO1]	[06M]						
		i) $T(n) = 4T(n/2) + n$ ii) $T(n) = 2T(n/2) + n\log n$								
	b)	What is iterative substitution method? Apply the Iterative substitution method to	[L3][CO1]	[06M]						
		Solve the following Recurrence relations.								
		T(n) = 2T(n/2) + n								
8	De	emonstrate Towers of Hanoi with algorithm and example.	[L3][CO1]	[12M]						
9	a)	Define disjoint set. Explain any four types of disjoint sets operations with	[L2][CO1]	[06M]						
		Examples.								
	b)	Explain the weighted union algorithm for union algorithm with example.	[L2][CO1]	[06M]						
10	a)	Explain the collapsing rule for Find algorithm with example.	[L2][CO1]	[06M]						
	b)	Determine steps of Union and Find algorithms with example.	[L5][CO1]	[06M]						

UNIT –II BASIC TRAVERSAL AND SEARCH TECHNIQUES,DIVIDE AND CONQUER

1	Explain techniques of binary trees with suitable example	[L2][CO2]	[12M]						
2	Elaborate BFS algorithm and trace out minimum path for BFS for the following	[L6][CO2]	[12M]						
	example.								
	$(A) \longrightarrow (B) \longrightarrow (C)$								
	G								
	D								
3		[L5][CO2]	[12M]						
3	Explain DFS algorithm and trace out minimum path for DFS for the following		[1211]						
	example.								
	Н								
	$A \downarrow B \downarrow C \downarrow G$								
4									
	following graph using DFS algorithm								
	A B C								
	(G)								
5	a) Compare between BFS and DFS techniques.	[L4][CO2]	[04M]						
	b) What is divide and conquer strategy? Write briefly about general method and its	[L3][CO2]	[08M]						
6	algorithm What is divide and conquer strategy? Explain the working strategy of Binary Search	[L2][CO2]	[12M]						
	and find element 60 from the below set by using the above technique: {10, 20, 30, 40,		[14171]						
	50, 60, and 70}. Analyze time complexity for binary search.								
7	Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for	[L2][CO2]	[12M]						
	given set of numbers 12, 33, 23, 43, 44, 55, 64, 77and 76.		_ -						
8	Analyze the working strategy of merge sort and illustrate the process of merge sort	[L4][CO2]	[12M]						
	algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.								
9	a) Sort the records with the following index values in the ascending order using quick	[L2][CO2]	[6M]						
	sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6. b) Analyze the time complexity of merge sort using recurrence relation	[L2][CO2]	[6 M]						
10	Explain the Strassen's algorithm for matrix multiplication and analyze time	[L2][CO2]	[6M] [12M]						
	complexity.		[14171]						
	<u> </u>	1							

UNIT –III GREEDY METHOD, DYNAMIC PROGRAMMING

1	Explain in detail about general method of greedy method with algorithm and list the few applications of greedy method.							[L2][CO3]	[12M]		
2	Elaborate job sequencing with deadlines by using greedy method where given the jobs, their deadlines and associated profits as shown below. Calculate maximum earned profit.								[L6][CO3]	[12M]	
	•	Jobs	J1	J2	J3	J4	J5	J 6			
		Deadlines	5	3	3	2	4	2			
		Profits	200	180	190	300	120	100			
3	Construct an of (p1,p2,p3,p4,p5,p (2,3,5,7,1,4,1) by	p6,p7) = (1	10,5,15	5,7,6,18					n=7,M=15 and 4,w5,w6,w7) =	[L3][CO3]	[12M]
4	a) Simplify the	algorithm for I	Knapsa	ck pro	blem a	nd ana	lyze tiı	ne con	nplexity.	[L4][CO3]	[6M]
	What is minimum kruskals algorithm.		nning	tree ar	nd writ	e the a	lgorith	ım of 1	pseudo code for	[L3][CO3]	[6M]
5	Apply the minim prims algorithm.		ree of	the fol	lowing	graph	using	Kruska	als algorithm and	[L3][CO3]	[12M]
	prims argorithm. (b) 8 C 7 (d)										
		4					9				
		a 11		6		1-	e e)			
		8 h	1		2		10				
6	a Write short notes about general method of dynamic programming.									[L3][CO3]	[3M]
	b Build any one application of dynamic programming with an example.									[L6][CO1]	[9M]
7	Discuss about Optimal binary search tree with suitable example.									[L2][CO3]	[12M]
8	Explain 0/1 knapsack problem by using dynamic programming with an examples. Construct an algorithm for All pairs of shortest path and calculate shortest path between									[L2][CO3] [L6][CO3]	[12M]
	all pairs of vertices by using dynamic programming method for the following graph.									[L0][CO3]	[12141]
	4										
	Q * • • • • • • • • • • • • • • • • • •										
	8 12										
	5 5										
10	4 7 3									[L4][CO3]	[12M]
	Analyze the minimum cost tour for given problem in travelling sales person Concepts by using dynamic programming.										[≖≝ı∜∄]
	10										
	6 15 9 8 10 9 4										
				9	12			3			

UNIT –IV BACKTRACKING,BRANCH AND BOUND

1	Distinguish in detail 8-queens	[L4][CO4]	[12M]						
2	Explain sum of subsets by usi	[L5][CO4]	[12M]						
3	a) Recall the graph coloring.	[L5][CO4]	[9M]						
3	b) Discuss about General me	[L3][CO4]	[3M]						
4	Discuss the Hamiltonian cycle	peration with example.	[L6][CO4]	[12M]					
5	Give brief description about the	id bound.	[L2][CO4]	[6M]					
6	Find the LC branch and bour	[L4][CO4]	[12M]						
	cost matrix is as follows:								
		1	2	3	4	5			
	1	00	20	30	10	11			
	2	15	00	16	4	2			
		1							
					2				
	4	19	6	18	∞	3			
	5	16	4	7	16	∞			
	Simplify 0/1 knapsack proble	m and	desig	n an a	lgorith	m of I	C Branch and Bound and	[L4][CO4]	[12M]
7	find the solution for the knaps								
	(w1,w2, w3, w4) = (2, 4, 6, 9)								
8	Construct the LC branch an	[L6][CO4]	[12M]						
	capacity M=15 such that pi=								
	boundtechnique.								
9	a) Explain the principles of	FIFO	brancl	h and l	ound.			[L2][CO4]	[6M]
	b) Explain the principles of	LIFO	brancl	h and l	bound.			[L2][CO4]	[6M]
10	Implement any one branch an	d bou	nd app	licatio	n with	an ex	ample.	[L3][CO4]	[12M]

UNIT –V NP-HARD AND NP-COMPLETE PROBLEMS

1	Explain the following	[L2][CO5]	[12M]
	i) P class		
	ii) NP class	ļ	
	iii) NP complete	ļ	
	iv) NP Hard	ļ	
	v) Non-deterministic problem		
2	Construct the non-deterministic algorithms with suitable example.	[L3][CO5]	[12M]
3	Build the non-deterministic sorting algorithm and also analyze its complexity.	[L6][CO5]	[12M]
4	Determine the classes NP-hard and NP-complete problem with example.	[L5][CO5]	[12M]
5	State and explain cook's theorem.	[L2][CO5]	[12M]
6	Illustrate the satisifiability problem and write the algorithm.	[L2][CO5]	[12M]
7	Explain Reduction source problem With example.	[L4][CO5]	[12M]
8	Explain the following:	[L4][CO5]	[12M]
	(a) decision problem		
	(b) clique		
	(c) non deterministic machine	ļ	
	(d) satisfiability		
9	How to make reduction for 3-sat to clique problem? and Explain	[L3][CO5]	[12M]
10	a) Statement the following with examples	[L4][CO5]	[6M]
	a) Optimization problem	ļ	
	b) Decision problem		
	b) Explain and shows the relationship between P,NP,NP Hard and NP Complete with	[L3][CO5]	[6M]
	neat diagram		

Prepared by: Mr. V. Gopi, CSE(SISTK)